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A P P L I E D  P H Y S I C S

Reservoir computing with biocompatible organic 
electrochemical networks for brain-inspired  
biosignal classification
Matteo Cucchi1*, Christopher Gruener1, Lautaro Petrauskas1,2, Peter Steiner3, Hsin Tseng1, 
Axel Fischer1, Bogdan Penkovsky4,5, Christian Matthus2, Peter Birkholz3,  
Hans Kleemann1, Karl Leo1

Early detection of malign patterns in patients’ biological signals can save millions of lives. Despite the steady im-
provement of artificial intelligence–based techniques, the practical clinical application of these methods is mostly 
constrained to an offline evaluation of the patients’ data. Previous studies have identified organic electrochemical 
devices as ideal candidates for biosignal monitoring. However, their use for pattern recognition in real time was 
never demonstrated. Here, we produce and characterize brain-inspired networks composed of organic electro-
chemical transistors and use them for time-series predictions and classification tasks using the reservoir computing 
approach. To show their potential use for biofluid monitoring and biosignal analysis, we classify four classes of 
arrhythmic heartbeats with an accuracy of 88%. The results of this study introduce a previously unexplored 
paradigm for biocompatible computational platforms and may enable development of ultralow–power consump-
tion hardware- based artificial neural networks capable of interacting with body fluids and biological tissues.

INTRODUCTION
Artificial intelligence (AI) is quickly progressing and will greatly influ-
ence our future life. One particular area where AI is a powerful tool 
is medicine and health care (1, 2). For instance, AI-based methods 
have achieved superhuman performance in the recognition of 
malign patterns present in biometric data and biosignals [e.g., electro-
cardiograms (ECG) (3) and electroencephalograms (EEG) (4)] or 
x-ray imaging (5). These results are based on artificial neural networks 
(ANNs), algorithms that mimic the parallel architecture principles of 
the brain for recognizing and classifying patterns (6).

However, real-world clinical implementation is so far limited to 
an “offline” analysis of the patients’ data using software-implemented 
neural networks. A highly attractive vision is the active monitoring 
and detection of malign patterns in vivo through computational 
platforms attachable to or even implantable into the body. The strin-
gent constraints for weight, volume, and heat dissipation limit the 
use of traditional AI-dedicated hardware in biological systems (7). 
In addition, the electrolytic environment and the mechanical mis-
match with soft biological tissues further hamper their integration.

Recently, much effort has been dedicated to the development of 
biocompatible organic materials for electronics (8, 9). In particular, 
organic electrochemical transistors (OECTs) were demonstrated for 
biosignal detection (10–14) owing to their response to local changes 
of ion concentrations, as well as their low power consumption and 
possible biocompatibility. However, their use for active recognition 
of alteration of biosignal and, more in general, information process-
ing is, to date, lacking. Fundamental advances have been reported 

in the fields of hardware-based ANNs (15–18). Moreover, in 2020, 
Yao et al. (19) reported on purely hardware-based convolutional 
ANNs using memristor devices, and Liu et al. (20) showed efficient 
neural signal processing using memristor arrays. Although these 
results demonstrate the huge potential of physical ANNs, their use 
in biological environments is still challenging. Training each neuron 
requires a precise control over the individual units of the network. 
For these reasons, the computational approach of reservoir com-
puting (RC) stands out as a potential brain-inspired framework to 
produce hardware neural networks and perform on-chip computation 
(21). Neural networks used for RC consist of a reservoir of randomly 
ordered nonlinear neurons, whose connections are not subject to 
training. Natschläger et al. (22) have introduced the liquid state ma-
chine as a variant of RC and have shown that the group of disordered, 
recurrent connected neurons behaves similarly to a cortical column 
in a biological neural system. Moreover, memory and computation 
units are inseparable (23), hence circumventing the Von Neumann 
bottleneck. This concept belongs to the class of computational par-
adigms known as natural or intrinsic computation (24). Software- 
implemented RC was proven to be excellent at recognizing harmful 
EEG or ECG patterns (25) and, since only the output layer of RC 
networks requires training (linear regression), RC is easier to imple-
ment on hardware than traditional neural networks (16, 26–28).

Up to now, the only work on using a combination of OECTs and 
RC for computation was reported by Pecqueur et al. (29): They 
showed that an array of traditional OECTs in global gate configura-
tions can be used to distinguish sinusoidal and square waveforms 
using RC. Their work nicely demonstrates the usefulness of the 
global gate condition, although the reservoir does not seem to im-
prove the separability of the two classes chosen for the test. Such 
global connectivity, in which the OECTs are immersed in the same 
ion-conductive electrolyte, mediates the time-dependent interactions 
between all the devices and allows mimicking the homeostatic reg-
ulation present in cortical systems. This condition, key for our sys-
tem and hardly achievable with traditional inorganic semiconductor 
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technology, was thoroughly investigated by Gkoupidenis and col-
leagues: They demonstrated the global control of the weight of the 
artificial synapses via modulation of the gate voltage and ion con-
centration (30) and that soft connections between all the devices 
produce global oscillations reminiscent of the synchronized brain 
oscillations (31).

In this work, we build nonlinear, dendritic networks of OECTs 
and use them for information processing on biosignals, demonstrat-
ing real-time classification in a biocompatible, hardware neural net-
work. We produce dendritic fibers composed of the organic mixed 
ionic-electronic conductor poly(3,4-ethylenedioxythiophene) (PEDOT) 
doped with hexafluorophosphate (PF6). We use these fibers, similar 
in nature to OECTs, to produce (semi)random networks as reser-
voir (Fig. 1A): The networks interact directly with the surrounding 
electrolytic solution and respond to local ionic displacement by non-
linearly projecting the input electrical signals onto the output layer. 
The information is stored into ionic state and harvested to per-
form information processing. The networks are grown via AC 

electropolymerization (32). Although the growth is intrinsically 
stochastic, we can control the branching degree and directionality. 
By using this technique with multiple metal pads, we grow semi-
conductive dendritic networks with tunable resistance and response 
time. The inherent coupling of fibers within the reservoir through 
the electrolyte creates a strong nonlinear transformation of the in-
put signals, ideal for brain-inspired approaches of computation, 
such as RC. When electrically excited, the networks show strong 
nonlinearities. We characterize the origin of the nonlinear behavior 
and find that, to ensure the nonlinear coupling, the network must 
feature a balance between the connections that bridge the input to 
the output layer (excitatory fibers) and fibers that branch out of the 
input layer but terminate before connecting to the output (inhibitory 
fibers), as shown in Fig. 1B. The former mainly carry the signals, 
while the latter alter the conductivity of neighboring fibers, there-
fore being responsible for the nonlinear effects of the networks. Re-
current connectivity, balanced between excitation and inhibition 
(E/I balance), is a key principle of our hardware similar to the cortical 

Fig. 1. Nonlinear behavior of the networks. (A) Optical microscope picture of a network, with four input channels and four output channels labeled (scale bar, 100 m). 
(B) Sketch of a network with E/I balance with highlighted excitatory and inhibitory nodes. (C) Input signals injected to the four labeled channels and (D) readout of the 
reservoir states measured at the four output channels. (E) and (F) report the Fourier transforms of (C) and (D), proof that the transfer function of the network is nonlinear: 
A multitude of new frequencies appear, proving the nonlinear projection performed by the reservoir. (G) Short-term memory featured by the network, key in RC. G is the 
change in conductance and  is the response time of the fiber.
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computational system (33). Moreover, the intertwined relationship 
between the hardware (PEDOT:PF6 network), the environment (the 
electrolytic solution), and its time-dependent changes (ion dis-
placement) is reminiscent of the intrinsic computation typical of 
biological systems.

Last, the structural complexity of the networks, the large set of 
input and output neurons, and the E/I balance allow us to go far 
beyond what was already achieved with RC in combination with 
OECTs. We test our system on a variety of computational tasks, 
including time-series prediction and classification. As we envision 
our system as an implant, each experiment is performed in a phosphate- 
buffered saline (PBS), an aqueous salt solution with an osmolarity 
and ion concentrations that match those of the human body. At-
tempting to classify four different classes of arrhythmic beats from 
the MIT-BIH dataset (34), we achieve an accuracy of 88%.

Nonlinear projection of the inputs
The networks are produced by AC electropolymerization as de-
scribed in (32) and Methods: Starting with a 20-electrode circular 
configuration, we bridge multiple metal pads through semiconductive 
networks (Fig. 1A). The single-device operational principle of pat-
terned OECTs and our PEDOT:PF6 fibers is analogous. However, 
significant differences arise when producing multichannel networks 
because the random arrangement of the fibers and branches leads to 
the existence of multiple time constants that mediate each fiber-fiber 
coupling via the liquid electrolyte (30, 31).

The stochastic mechanism of the growth grants a degree of ran-
domness to the network, as well as the formation of fibers with dif-
ferent resistance and response time to external stimuli. The organic 
networks can be grown randomly or semirandomly, without the need 
of following accurate patterns or configurations. It was shown that 
the device-to-device variability is a requirement that simultaneously 
grants a richer reservoir as well as a high fault tolerance during the 
fabrication process (29), which lends well to the fabrication method 
we use here. This ultimately enables not only a facile and low-cost 
fabrication process but also complex nonlinear voltage-dependent 
and frequency-dependent reservoirs, as well as giving the networks 
high degree of interconnectivity and recurrency, which are desir-
able features in neuromorphic engineering.

Once the network is produced, time-dependent electrical signals 
are applied to a set of electrodes (input layer) and injected into the 
network immersed in PBS. The potential at another set of electrodes 
(reservoir) is read out. As shown in Fig. 1, the network projects the 
input signals onto the reservoir nonlinearly by mapping different 
randomly weighted sums of the input signal through the network’s 
nonlinearity: When sine waveforms are injected (Fig. 1C), the out-
put signal (Fig. 1D) is a nonlinear superposition of the inputs. To 
prove this, we analyze the Fourier transform spectra (Fig. 1, E and F) 
and observe new frequencies arising in the outputs. The nonlinear 
projection of the input is required for computation because it in-
creases the separability of the classes in the output domain (35). The 
network in dry ambient is purely resistive and hence linear: Such 
reservoirs lack any computational power. However, when PBS im-
merses the networks, the fibers and their mutual interactions give 
rise to a rich variety of nonlinearities. Figure S1 (A and B) proves 
that the nonlinear behavior is mediated by the ion drift in solution, 
which responds to the time-varying local electric field to change the 
ionic states of the reservoir. At the same time, the electrolyte behaves 
linearly, as expected at the small fields and low ion concentration 

that we operate at (fig. S1C). The existence of multiple time constants 
due to the random branching grants the networks complex dynamics. 
However, we can break down the processes into three main mecha-
nisms leading to the desired nonlinear trajectories: First, if a poten-
tial Vi is applied to an inhibitory fiber and a potential Ve is applied 
to an excitatory fiber, a classical three-terminal transistor configu-
ration is reproduced. PEDOT:PSS-based OECTs have been thoroughly 
studied and characterized, and their transfer characteristics can be 
modeled (36) according to

   i =    Wt ─ L   C ⋅  

⎧

 
⎪

 ⎨ 
⎪

 

⎩
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    (1)

where Vth is threshold voltage,  is the hole mobility, C is the volu-
metric capacitance, and W, L, and t are the geometrical width, 
length, and thickness of the channel, respectively. If the OECT op-
erates close to saturation, the output characteristics become weakly 
nonlinear. Stronger nonlinearities arise in the sub-threshold regimes. 
The second effect is a fiber-fiber cross-talk that stems from the in-
teraction between two excitatory fibers: Differently from the previous 
situation, both fibers are carrying the signal and “gating” each other 
simultaneously. If V1 and V2 are the potentials applied to the two 
fibers, then the currents I1 and I2 can be modeled, assuming two 
parallel and identical fibers, as

   I  1   =    Wt ─ L   C(2 V  th   −  V  2   +  V  1   )    V  1   ─ 2    (2)

and

   I  2   = μ   Wt ─ L   C(2 V  th   −  V  1   +  V  2   )    V  2   ─ 2    (3)

Hence, Eqs. 2 and 3 resemble Eq. 1. The two parallel fibers be-
have like a transistor that requires higher voltage to reach saturation 
because of the linear voltage drop across both the channel and the 
gate. The complete mathematical derivation of Eqs. 2 and 3 is in 
note S1. Moreover, this is proven in fig. S2, where two parallel fibers 
are grown and their conductance is measured while both are biased, 
showing the nonlinear cross-talk between them according to Eqs. 2 
and 3 and note S1. This example is key to show that a typical tran-
sistor geometry (gate and channel) is not necessary to have a non-
linear projection of the input. Rather, a multitude of fibers can achieve 
the same results while granting a larger number of readouts.

Last, it is worth noting that even a single fiber features nonlinear 
output characteristics when immersed in an electrolyte. This is caused 
by the ionic transport in the bulk solution that occurs in parallel 
with the electronic transport through the channel. As a consequence, 
ions accumulate at the electrodes and compensate the PF6 anions in 
the semiconductor at the interface. This leads to a voltage depen-
dency of the fiber’s resistance, as proven through electrical impedance 
spectroscopy in fig. S3. The equations and considerations reported 
are valid for a steady-state condition and neglect the non-instantaneous 
ion accumulation at the liquid/fiber interface, producing a marked 
frequency dependency and further enriching the reservoir’s dynamics. 
In particular, the time-dependent interaction between fibers trans-
lates into a short-term memory effect. Memory is a key feature in 
RC networks as it ensures that the reservoir state of one time instance 
not only depends on the current input signal but also is affected by 
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immediate past reservoir states. This effect is proven in Fig. 1G: 
Here, pulses applied to an inhibitory fiber change the conductance 
of the neighboring excitatory fiber. If the temporal offset of the pulses 
is larger than the ionic relaxation time , the reservoir will always 
react toward the same state. On the contrary, a different response is 
expected if the excitations are repeated with an offset smaller than , 
where a continuous change of the fiber’s conductance is observed. 
An analogous effect was shown to demonstrate paired pulse facilita-
tion of traditional PEDOT-based devices (37). After proving a suf-
ficient complexity and nonlinearity of the networks and identifying 
three distinct sources of nonlinearity, we capitalize on the use of this 
system for information processing.

Reservoir design
Because of the nonconscious design of the reservoirs, and the in-
distinguishable memory and computing units, RC is usually regarded 
as a brain-inspired approach. On top of this, our networks mimic 
another well-established condition present in the brain, i.e., an E/I 
balance: Although almost any OECT network morphology leads to 
nonlinear transformation of the inputs, two situations result in lin-
ear networks incapable of solving any computational task: (i) if no 
fiber bridges the input layer with the output (totality of inhibitory 
fibers) and (ii) if the network is fully interconnected (totality of ex-
citatory fibers). This is similar to the brain, in which efficient and 
accurate input processing is possible only if a precise balance between 
inhibitory and excitatory neurons (E/I balance) is maintained, as 
observed experimentally (38) and theoretically (39).

When applying sinusoidal excitations to a completely inhibitory 
network, the reservoir relies on the ionic transport. Here, the high 
resistance and the linear behavior of the electrolyte (fig. S1C) pre-
vent the use of the networks (Fig. 2A). After producing some excit-
atory fibers (Fig. 2B), a nonlinear mapping is obtained. Last, by 
growing more and bridging the leftover inhibitory fibers, a completely 
excitatory network is formed (Fig. 2C): Here, the input is projected 
onto the output nodes almost linearly because the signal propagates 
down the fibers, producing minimal ion displacement. An in-depth 
analysis of the optimal E/I balance for the OECT networks is miss-
ing and will be investigated theoretically and experimentally in 
a separate study. Besides, we can tune the properties of the indi-
vidual fibers: The ionic transient time, as observed for OECTs, is 
directly proportional to the resistance of the solution and the channel 
capacitance (40). The capacitance of the fibers is proportional to their 
volume, and it is controlled by varying the growing parameters 
when making the network, according to necessity: For example, 
highly capacitive (thicker) fibers were found to be suitable for a slow 
time-series prediction and can be made by electropolymerizing at 
low frequency. Faster dynamics are needed when trying to sample 
heartbeats, hence requiring smaller capacitance.

RESULTS
The process of collecting inputs, mapping them nonlinearly, and 
extracting previously unknown knowledge is known as computation 
or information processing. This is a purely physical phenomenon 
widely harnessed by means of the electromagnetic laws and Boolean 
logic in digital computers, but, in principle, applicable to any physical 
closed system. The machine learning approach we use is a single- 
node RC. Our networks are particularly suitable for RC because of 
the random configuration of the fibers, their global connectivity, the 

nonlinear behavior, and the short-term memory effect. Here, we use 
PEDOT:PF6 networks submerged in an electrolytic environment to 
carry out information processing. The network projects the input 
signals nonlinearly into a new domain where the linear classifica-
tion becomes more likely (fig. S5). Eighty percent of the input data 
are labeled with the target class. This is used to train the network by 
finding the best linear transformation, which is used to test the re-
maining 20% of the data. Accuracy A is defined as

  A(%) =   
Correctly classified entries

  ────────────────  Total number of entries   · 100  (4)

During the testing phase, we use a winner-takes-all approach. Our 
system can be used in two configurations, shown in fig. S4: a first 
one, in which the input signals are applied to the metal electrodes, 
and a second one, where one or more metal lines of the input layers 
are biased with a DC voltage while the input signal is directly ap-
plied to the solution. The former is suited for systems where a mul-
titude of inputs need to be processed simultaneously (e.g., neural 
and sensory inputs), while the latter can be used to study single in-
puts that cause large ion displacements, such as muscular or cardiac 
signals. As a preliminary test, we evaluate vastly different classifica-
tion tasks to assess the usefulness of the system in a wide variety of 
applications. First, we perform a classification task using the Iris 
dataset (41), a classic dataset with four attributes for three species of 
flowers. By encoding the dataset entry into a DC (see Methods) volt-
age, we obtain A = 70% (fig. S6A). Since a DC voltage does not make 
use of the time-dependent interaction between fibers, we encode the 
dataset entry into a frequency value, and we apply them to the input 
layer with sine waves of amplitude 1 V. In this way, we achieve 
96.7% accuracy (see fig. S6B and Methods). In addition, we use the 
network for a time-series prediction using stock data (42) with an 
accuracy of 97% (fig. S6C).

Stimulated by these promising results in classification and time- 
series prediction, we attempt the classification of biological signals. 
Given the interaction of the networks with the ions and their bio-
compatibility, a very attractive application of the PEDOT:PF6 net-
works would be in a biological environment for the in vivo detection 
of malign patterns. Here, we classify heartbeats of four different cat-
egories, using the MIT-BIH (34) Arrhythmia Database. The MIT-
BIH dataset includes the ECG signals for 48 different subjects, and 
it is recommended by the American Association of Medical Instru-
mentation (AAMI) as the heartbeats are classified into four main 
groups defined by AAMI (details in Methods). The heartbeats are 
injected into the reservoir with an average rate of 60 heartbeats 
per minute.

A first experiment led to an accuracy of 80%, which already shows 
an improvement of 20% with respect to the same classification tasks 
performed with the input vectors. To improve the accuracy, we im-
plemented an analog feedback loop delay line with a delay time of 
260 ms. Using RC in combination with a delay line (Fig. 3A) is a 
typical method to increase the numbers of nodes. In turn, increas-
ing the dimensionality in ANNs is known to increase the model 
variance, thus better fitting more complex data. The delay has the 
practical effect of storing the reservoir state in the long term and 
creates recurrency in the nodes, a key aspect in artificial and biolog-
ical neural networks. The delay line works effectively provided that 
the delay is longer than the response time of the reservoir r (27). For 
our system, r ≈ 100 ms, limited by the ionic motion. The circuit 
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Fig. 2. E/I balance of the network at different stages of the network growth. Output signals read out with a network grown to be (A) totally inhibitory, (B) E/I balanced, 
and (C) totally excitatory. The input channels are marked with a red “*,” and the outputs are read out at the electrodes marked with a green “+.” As proven by the respective 
Fourier transforms (bottom row), only a balanced network is able to project the input nonlinearly onto the output layer.

Fig. 3. Heartbeat classification using PEDOT networks. (A) Schematics of the steps used for carrying out information processing with the networks. The use of the 
delay line is optional. (B) Confusion plot of the measurement performed with the delay line to classify heartbeats: A = 88%. (C) Reservoir patterned and grown onto a 
conformable substrate of polyimide. In the inset, a magnification of the network grown on polyimide (photo credit: Matteo Cucchi, Technische Universität Dresden). The 
different surface does not affect the growth or the lithographic process.
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designed for the delay line is reported in fig. S7. With the use of the 
delay line, the accuracy significantly increases. Figure 3B shows the 
results of the classification: A regular heartbeat (class N) is correctly 
distinguished by an arrhythmic one 91% of the time (9% false posi-
tive), while false negatives happen in 13% of the cases. Overall, each 
class is recognized with a good accuracy, ranging from a minimum 
of 85% for class F to a maximum of 92% for class A. Overall, an ex-
cellent total accuracy of 88% is obtained. See Table 1 for the defini-
tion of the classes.

Above, we demonstrated that PEDOT:PF6 networks can be used 
to monitor electrical biological signals. Their use can be extended to 
the analysis of biofluids. For example, fig. S8 shows the response of 
a network immersed in blood before and after a meal. Hence, polymer- 
based reservoirs might be used in the future for real-time monitoring 
of blood parameters.

We envision this system as a potential implantable computational 
platform for in vivo detection and classification of biosignals to be 
used, for instance, in the aftermath of “open” surgeries. In general, 
PEDOT was demonstrated to be a biocompatible and cytocompatible 
material (43–45). In addition, the in-liquid operation of the networks 
creates an intrinsic affinity between the computing reservoir and 
the biological environment, and the high capacitance of the fibers 
ensures their response to small ionic displacement. Moreover, the 
higher temperature is expected to speed up the network’s response 
because of the larger diffusivity of the ions. However, a number of 
challenges must be overcome to this end. In our work, while the 
projection in the linearly separable space is carried out by the reser-
voir, the linear regression is calculated afterward on software. It is, 
however, possible to combine the linear regression with the reser-
voir to have a fully integrated circuit and achieve classification on 
hardware. This can be achieved by using a crossbar array of adjust-
able memristive devices capable of solving matrix multiplication 
through Ohm’s law. Examples are abundant [see, for example, (39, 46, 47)]; 
electrochemical nonvolatile organic devices are PEDOT-based de-
vices that could be used in combination with our PEDOT networks 
(37) for the linear regression.

Another key aspect for implantable electronics is the conformable 
nature of the substrate as well as its weight, realizable by patterning 
the network on a polymeric conformable substrate: We achieve this 
by producing reservoirs on a flexible polyimide substrate as shown 
in Fig. 3C. Last, we must ensure a low power consumption of the 
networks to prevent the tissue from overheating and to allow the 
implant to be supplied by small and light-wave thin-film batteries: 
The power consumption of the networks is approximately 200 nW 

per output channel used; for comparison, the power consumption 
of electronic RC systems [e.g., (28)] often exceeds 1 W, and other 
implantable systems, such as modern pacemakers, consume around 
30 W. Although including more output channels increases the power 
consumption, it leads to improved classification results because of 
the higher dimensional domain of the output layer. Ultimately, the 
geometrical size of the networks needs to be designed to have the 
optimal solution: Increasing the size could limit the cross-talk be-
tween two fibers lying far apart. On the other hand, miniaturizing 
the system will increase the speed of the system, allowing for the 
computation of faster signals (currently limited at around 200 Hz), 
e.g., for speech recognition. However, miniaturization can introduce 
redundant output signals coming from the high-density integration 
of the output pads: Two neighboring output electrodes might pro-
vide an almost equivalent signal, hence a redundant information 
that does not improve the separation. As a final note, a collection of 
reservoirs, connected in series or parallel, may improve the classifi-
cation accuracy rate and potentially lead to hierarchically organized RC.

DISCUSSION
In this work, we produced biocompatible hardware-based ANNs 
based on OECTs, which we use for computation and classification 
tasks using the RC approach. The dendritic, semirandom configu-
ration of the networks immersed in aqueous electrolyte produces a 
reservoir that shows a rich variety of responses to time-dependent 
electrical excitations. The ionic states of the reservoir are harvested 
and used for information processing in the framework of RC. We 
demonstrated that the organic networks are particularly suitable for 
such purpose owing to complex nonlinear dynamics, which we char-
acterize in detail, and features typical of biological cortical systems 
(e.g., recurrency, short-term memory, and E/I balance). Since these 
devices operate in an electrolytic environment and PEDOT is a bio-
compatible material, we envision the networks as lightweight, non-
invasive implants, capable of monitoring biosignals, and perform 
“online” computation without the aid of energy-consuming software. 
We prove the usefulness of the organic networks on a diverse set of 
computational tasks such as a flower classification using the Iris data-
set (accuracy of 96%), time-series prediction (97%), and biofluids 
monitoring. Owing to these excellent results, we attempt a classifi-
cation of arrhythmic heartbeats: We achieve an accuracy of 88%.

METHODS
Glass and polyimide substrates were prepared by evaporating 3 nm 
of Cr and 50 nm of Au, followed by lithographic patterning using 
the positive resist AZ 1518 (microchemicals), standard etchant gold, 
and chromium. Last, an insulation layer (negative photoresist SU8) 
was spin-coated and patterned. The networks were grown starting 
from a 20-electrode configuration by means of AC electropolymerization: 
The central area is immersed in a precursor solution containing the 
monomer EDOT, as in (32). We used tetrabutylammonium hexa-
fluorophosphate (TBAPF6) as electrolyte. TBAPF6 features a large 
electrochemical window and grants conductive properties to the 
resulting polymer, similarly to the commonly used PSS. As long as 
the fibers can be electrochemically doped and dedoped, the choice 
of the dopant is not crucial. Note that the electrolytic solution used 
for the network fabrication is different from the one used for the 
measurements throughout this work, which is PBS, an aqueous salt 

Table 1. The classes of the MIT-BIH dataset can be lumped into four 
main classes according to the AAMI.  

Category Classes

A Atrial premature beat (A), aberrated atrial premature beat 
(a), nodal (junctional) premature beat (J), supraventricular 

premature beat (S)

F Fusion of ventricular and normal beat (F)

N Normal beat (N), left and right bundle branch block beats 
(L,R), atrial escape beat (e), nodal (junctional) escape beat (j)

V Premature ventricular contraction (V), ventricular escape 
beat (E)
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solution with an osmolarity and ion concentrations that match those 
of the human body.

A sine or square wave signal of amplitude 2 V and arbitrary fre-
quency is applied between two (or more) electrodes. As a result, 
dendritic fibers grow following the lines of the electric field. For the 
computational tasks, dataset entries were preprocessed (see below) 
and used as inputs for the reservoir. Simultaneously, the output sig-
nals (across a load resistor of 100 kilohms) were read out using 
an analog data acquisition system (Measurement computing USB-
1208HS-4AO). Eighty percent of the output data are used for the 
training: The data are arranged in a matrix X and the linear regres-
sion consists of finding the matrix Y such that

  X * Y = T  (5)

where T is the target matrix composed of the known outputs. The 
remaining 20% of the data are multiplied by Y and, by using a winner- 
takes-all approach, the resulting class is determined.

Iris dataset entries were normalized to have zero mean. Afterward, 
the entries were encoded into frequency, using a sine wave of ampli-
tude 1 V. For the heartbeat classification, individual heartbeats have 
been extracted from the MIT-BIH dataset, the most used database 
for this kind of classification. They were then divided into the four 
main categories of arrhythmia specified by the AAMI, as shown in 
Table 1. Last, the data were resampled, normalized to have zero 
baseline and 1 V peak, and fed into the network with a pace of 60 
heartbeats per minute. A total of 3000 heartbeats (750 per class) were 
randomly selected from the dataset and used for the classification task.

The delayed-feedback line used for the heartbeat classification 
consisted of three main blocks: (i) a nonlinear element, (ii) a low-
pass filter, and (iii) a delay unit. The nonlinear element is, as de-
scribed above, the OECT-based network. One output fiber of the 
network is then connected to a transimpedance amplifier to convert 
the current output to a voltage and to provide gain. This is after-
ward passed through a first-order low-pass filter implemented via 
an RC network, whose output is then fed to the delay line. The delay 
line itself is implemented fully analog, as an eight-stage LC-ladder 
network. Additional amplifiers and buffers complete the circuit to isolate 
the different stages (fig. S7). The characterization of the short-term 
memory and of the crosstalk between two parallel fibers were carried 
out with two SMUs Keithley 2600 interfaced to a computer using the 
software SweepMe! (www.sweep-me.net).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabh0693/DC1
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